Convergence Rates of Split-Step Theta Methods for SDEs with Non-Globally Lipschitz Diffusion Coefficients

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Theta schemes for SDDEs with non-globally Lipschitz continuous coefficients

Keywords: Stochastic differential delay equation (SDDE) Split-step theta scheme Stochastic linear theta scheme Strong convergence rate Exponential mean square stability a b s t r a c t This paper establishes the boundedness, convergence and stability of the two classes of theta schemes, namely split-step theta (SST) scheme and stochastic linear theta (SLT) scheme, for stochastic differential de...

متن کامل

An Explicit Euler Scheme with Strong Rate of Convergence for Financial SDEs with Non-Lipschitz Coefficients

We consider the approximation of stochastic differential equations (SDEs) with non-Lipschitz drift or diffusion coefficients. We present a modified explicit EulerMaruyama discretisation scheme that allows us to prove strong convergence, with a rate. Under some regularity and integrability conditions, we obtain the optimal strong error rate. We apply this scheme to SDEs widely used in the mathem...

متن کامل

Strong convergence and stability of implicit numerical methods for stochastic differential equations with non-globally Lipschitz continuous coefficients

We are interested in the strong convergence and almost sure stability of Euler-Maruyama (EM) type approximations to the solutions of stochastic differential equations (SDEs) with non-linear and nonLipschitzian coefficients. Motivation comes from finance and biology where many widely applied models do not satisfy the standard assumptions required for the strong convergence. In addition we examin...

متن کامل

A Fundamental Mean-Square Convergence Theorem for SDEs with Locally Lipschitz Coefficients and Its Applications

A version of the fundamental mean-square convergence theorem is proved for stochastic differential equations (SDEs) in which coefficients are allowed to grow polynomially at infinity and which satisfy a one-sided Lipschitz condition. The theorem is illustrated on a number of particular numerical methods, including a special balanced scheme and fully implicit methods. The proposed special balanc...

متن کامل

Asymptotic error distribution of the Euler method for SDEs with non-Lipschitz coefficients

In [14, 8] Kurtz and Protter resp. Jacod and Protter specify the asymptotic error distribution of the Euler method for stochastic differential equations (SDEs) with smooth coefficients growing at most linearly. The required differentiability and linear growth of the coefficients rule out some popular SDEs as for instance the Cox-Ingersoll-Ross (CIR) model, the Heston model, or the stochastic Br...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: East Asian Journal on Applied Mathematics

سال: 2023

ISSN: ['2079-7362', '2079-7370']

DOI: https://doi.org/10.4208/eajam.161121.090722